
PRINCIPLES OF OPERATING SYSTEMS

LECTURE 31: Deadlock Detection & LECTURE 31: Deadlock Detection &
RecoveryRecovery

Deadlock DetectionDeadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

Single Instance of Each Resource TypeSingle Instance of Each Resource Type

 Maintain wait-for graph
 Nodes are processes.
 Pi Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for a cycle in
the graph. If there is a cycle, there exists a deadlock.

 An algorithm to detect a cycle in a graph requires an order
of n2 operations, where n is the number of vertices in the
graph.

ResourceResource--Allocation Graph and WaitAllocation Graph and Wait--for Graphfor Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource TypeSeveral Instances of a Resource Type

 Available: A vector of length m indicates the number of
available resources of each type.

 Allocation: An n x m matrix defines the number of resources
of each type currently allocated to each process.

 Request: An n x m matrix indicates the current request of
each process. If Request [ij] = k, then process Pi is
requesting k more instances of resource type. Rj.

Detection AlgorithmDetection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:
(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false;otherwise, Finish[i] = true.
2. Find an index i such that both:

(a) Finish[i] == false
(b) Requesti Work

If no such i exists, go to step 4.

Detection Algorithm (Cont.)Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state.

Example of Detection AlgorithmExample of Detection Algorithm

 Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

Example (Cont.)Example (Cont.)

 P2 requests an additional instance of type C.
Request

A B C
P0 0 0 0
P1 2 0 1

P2 0 0 1
P3 1 0 0
P4 0 0 2

 State of system?
 Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.
 Deadlock exists, consisting of processes P1, P2, P3, and P4.

DetectionDetection--Algorithm UsageAlgorithm Usage

 When, and how often, to invoke depends on:
 How often a deadlock is likely to occur?
 How many processes will need to be rolled back?

 One for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be many
cycles in the resource graph and so we would not be able to tell
which of the many deadlocked processes “caused” the deadlock.

Recovery from Deadlock: Process TerminationRecovery from Deadlock: Process Termination

 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is eliminated.

 In which order should we choose to abort?
 Priority of the process.
 How long process has computed, and how much longer to

completion.
 Resources the process has used.
 Resources process needs to complete.
 How many processes will need to be terminated.
 Is process interactive or batch?

Recovery from Deadlock: Resource PreemptionRecovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process for that state.

 Starvation – same process may always be picked as victim,
include number of rollback in cost factor.

